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Abstract
Numerous recent works show that overparameter-
ization implicitly reduces variance for minimum-
norm interpolators, suggesting vanishing benefits
for ridge regularization in high dimensions. How-
ever, empirical findings suggest that this narrative
may not hold true for robust generalization. In
this paper we reveal that for overparameterized
linear regression, the robust risk is minimized for
a positive regularization coefficient even when the
training data is noiseless. Hence, we effectively
provide, to the best of our knowledge, the first
theoretical analysis on the phenomenon of robust
overfitting.

1. Introduction
Conventional statistical wisdom suggests that interpolat-
ing estimators may overfit on noise and hence achieve
sub-optimal prediction performance. For regression on lin-
earized models, ridge regularization is commonly used to
reduce the effect of noise and consequently obtain an esti-
mator with stronger generalization. In this paper, we study
the linear ridge estimate that minimizes the square loss with
an λ-weighted `2 penalty. It has reduced model complexity
by paying the price of worse data fit.

This classical rationale is challenged by recent observations
on overparameterized models: Very large neural networks,
for example, do not sacrifice generalization performance on
i.i.d. samples even if they are trained until convergence and
exhibit interpolation (Nakkiran et al., 2020). In particular,
the benefits of regularization techniques such as early stop-
ping vanish when the neural network is wide enough. This
phenomenon is often referred to as double descent (Belkin
et al., 2018).

For linear regression without additional prior knowledge, a
natural interpolator to study is the minimum-norm interpo-
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lator: not only is it the ridge estimate when taking λ→ 0
but it also corresponds to the solution of gradient descent
initialized at zero. Motivated by the double descent phe-
nomenon, a plethora of recent papers study generalization
properties of minimum-norm interpolators (Dobriban & Wa-
ger, 2018; Ghorbani et al., 2021; Hastie et al., 2019; Bartlett
et al., 2020; Mei & Montanari, 2019; Muthukumar et al.,
2020a;b) and show that the variance decreases as the overpa-
rameterization ratio increases. Most works focus on settings
where the optimal regularization parameter satisfies λopt ≤ 0
(Kobak et al., 2020; Wu & Xu, 2020; Richards et al., 2021),
implying that it is redundant or even detrimental to explicitly
regularize with λ > 0.

The narrative that regularization is redundant for large over-
parameterized models is based on theoretical and experimen-
tal findings that analyze the standard risk. However, this
metric assumes identically distributed training and test data
and fails to reflect the prediction performance of a model
when the test data has a shifted distribution, is attacked by
adversaries, or primarily contains samples from minority
groups. In fact, mounting empirical evidence suggests that
regularization is indeed helpful for robust generalization,
even when it does not benefit the standard risk (Rice et al.,
2020; Sagawa et al., 2020a;b). This phenomenon is some-
times referred to as robust overfitting.

In the presence of noise, the following intuition holds true:
the robust risk amplifies the estimator variance and hence
regularization that reduces the effect of noise can be benefi-
cial for robust generalization (Sanyal et al., 2021). However,
we observe that even when the training data is entirely noise-
less, robust overfitting persists! In particular, we observe in
Figure 1 that for high-dimensional feature models, the robust
risk of linear minimum `2-norm interpolators (i.e. λ→ 0)
is larger compared to a ridge estimate with λ > 0. Further,
in contrast to the standard risk, the robust risk benefits from
regularization even in the overparameterized regime d� n
and for noiseless data.

To date, prior work does not predict nor explain our ob-
servations in Figure 1 that contradict intuition: if `2-norm
minimization is yielding a bad solution for noiseless data,
why would it help to sacrifice data fit and increase the weight
of the ridge penalty? In this paper, we show for linear ridge
regression with isotropic Gaussian covariates that asymptot-
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(a) Noisy observations (σ2 = 0.2)
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(b) Noiseless observations (σ2 = 0)

Figure 1. Decrease of population risks for linear regression when using the ridge estimate (λopt > 0) as opposed to the min-norm
interpolator (λ→ 0) (detailed settings as in Figure 2). While the standard risk only benefits from ridge regularization in the noisy case,
the robust risk decreases in the heavily overparameterized setting d/n� 1 even in the noiseless case.

ically, as d, n→∞ and d/n→ γ, a strictly positive ridge
penalty leads to a systematic improvement in robust gener-
alization. Our results provide the first rigorous explanation
of robust overfitting even in the absence of noise.

2. Risk minimization framework
In this section, we describe the setup for our theoretical
analysis of linear regression. We define the data generat-
ing process, the standard and robust risks, and formally
introduce the estimators that we analyze.

2.1. Problem setting

We consider an observation model with covariates (or fea-
tures) x ∈ Rd drawn from a standard normal distribution
with zero mean, i.e., x ∼ P := N (0, Id), and with the target
variable y ∈ R defined as a noisy observation of a linear
function y = 〈θ?, x〉 + ξ with ξ ∼ N (0, σ2). Here, θ?

denotes the ground truth vector with unit `2-norm. As men-
tioned before, we focus on the noiseless case with σ = 0 to
isolate the effect of finite sampling from observation noise,
and include σ > 0 only for completeness.

The results in this paper are of asymptotic nature and hold
when d/n→ γ as both the dimensionality d and the num-
ber of samples n tend to infinity. This high-dimensional
regime is widely studied in the literature (Bühlmann & Van
De Geer, 2011; Wainwright, 2019) as it yields precise pre-
dictions for many real world problems where both the input
dimension and the data set size are large. It is also the pre-
dominant setting considered in previous theoretical papers
that discuss overparameterized linear models (Dobriban &
Wager, 2018; Hastie et al., 2019; Ali et al., 2020; Deng et al.,
2021; Javanmard et al., 2020; Javanmard & Soltanolkotabi,
2020; Sur & Candès, 2019).

2.2. Standard and robust risk

We now introduce the standard and robust evaluation met-
rics for regression. First, we define the standard risk of an
estimator θ to be the population mean squared error

R(θ) := EX∼P (〈θ,X〉 − 〈θ?, X〉)2 , (1)

where the expectation is taken over the marginal feature
distribution P. Conditioned on the training data, the risk is
fixed, and our asymptotic bounds hold almost surely over
draws of the training set.

The broad application of ML models in real-world decision-
making processes increases requirements on their robust-
ness. For example, for the image domain, robust classifiers
should yield the same prediction when an image is attacked
via an additive imperceptible `p-perturbation that do not
change the ground truth label. In this case, the estimator
which has zero standard population risk also achieves zero
robust population risk. Transferred to linear regression, such
additive consistent perturbations need to be orthogonal to
θ?. In particular, we study the adversarially robust risk of a
parameter θ with respect to consistent `2-perturbations

Rε(θ) := EX∼P max
δ∈U2(ε)

(〈θ,X + δ〉 − 〈θ?, X〉)2 (2)

= ‖θ? − θ‖22 +

√
8ε2

π
‖Π⊥θ‖2‖θ? − θ‖2 + ε2‖Π⊥θ‖22,

where U2(ε) := {δ ∈ Rd : ‖δ‖2 ≤ ε and 〈θ?, δ〉 = 0}
and Π⊥ is the orthogonal projection onto the ground truth
vector θ?. The proof for the second equality can be found
in Appendix A.1.

In many scientific applications, security against adversarial
attacks may not be the dominating concern and one may
instead require estimators that are robust against small dis-
tribution shifts. Earlier work (Sinha et al., 2018) points
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(a) Noisy observations (σ2 = 0.2)
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(b) Noiseless observations (σ2 = 0)

Figure 2. Asymptotic theoretical predictions for d, n → ∞ (curves) and experimental results with finite d, n (markers) for the robust
(yellow, ε = 0.4) and standard (blue) risk of the min-norm solution (solid, interpolating) and the ridge regression estimate with optimal
λ (dashed, regularized) for noisy (left) and noiseless data (right). The experiments use n = 1000 samples of the model described in
Section 2.1. We observe that the gap between the robust risk of the interpolating and optimally regularized estimator persists even in the
noiseless case.

out that distribution shift robustness and adversarial robust-
ness are equivalent for losses that are convex in the pa-
rameter θ. In our setting, adversarial robustness against
consistent `p-perturbations implies distributional robustness
against `p mean shifts in the covariate distribution P (see
Appendix A.2).

2.3. Interpolating and regularized estimator

We study the minimizer of standard linear ridge regression

θ̂λ = arg min
θ

1

n

n∑
i=0

(yi − 〈θ, xi〉)2 + λ‖θ‖22 (3)

that we call the ridge estimate. For λ > 0, we obtain a
regularized predictor θ̂λ. As λ→ 0, we obtain the minimum
norm interpolator

θ̂0 = arg min
θ
‖θ‖2 such that 〈θ, xi〉 = yi for all i. (4)

For linear regression on isotropic features there exists a well-
known correspondence between the optimization path of
zero-initialized gradient descent and the regularization path
of the ridge regression estimator (see for example (Ali et al.,
2019; 2020)). Hence, the results presented in this paper
for ridge regularization directly translate to early stopped
gradient descent on the mean squared loss.

3. Main results for ridge regression
In this section, we prove that preventing interpolation on
noiseless samples via ridge regularization (3) with λ > 0
improves the robust risk relative to an un-regularized, in-
terpolating predictor. We further provide an explanation

for why regularization is beneficial for the robust risk even
when it does not improve the standard risk.

3.1. Main result

The following theorem provides a precise asymptotic de-
scription of the consistent `2 robust risk for the ridge regres-
sion estimate in (3) as d/n→ γ and d, n→∞. The proof
uses techniques from (Hastie et al., 2019; Knowles & Yin,
2014) and can be found in Appendix B.
Theorem 3.1. Assume isotropic Gaussian covariates, i.e.,
PX = N (0, Id)). Then, for d, n → ∞ with d/n → γ and
for any λ ≥ 0, the robust risk of the estimators θ̂λ defined
in Equations (3), (4) converges to

Rε(θ̂λ)
a.s.−→ B + V + ε2P +

√
8ε2

π
P(B + V) (5)

where P = B + V − λ2(m(−λ))2 and B = λ2m′(−λ),
V = σ2γ(m(−λ)− λm′(−λ)) are the asymptotic bias
and variance. The function m(z) is given by m(z) =
1−γ−z−

√
(1−γ−z)2−4γz
2γz and m′ is the derivative of m. Fur-

thermore, the standard risk R(θ̂λ)
a.s.−→ B + V .

We plot the precise asymptotic risks of the ridge esti-
mate with optimal regularization parameter λopt and the
minimum-norm interpolator λ = 0 in Figure 2.1 For the ro-
bust risk we use ε = 0.4. Firstly, Figure 2a reveals that ridge
regularization reduces the robust risk even for d/n� 1 well

1Here we choose λ using the population risk oracle, in practice
one would resort to standard tools such as cross-validation tech-
niques that also enjoy theoretical guarantees (see e.g. (Patil et al.,
2021)).
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(a) Robust risk as λ increases
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Figure 3. Theoretical curves for the robust risk with ε = 0.4 (a) and decomposed terms (b) as λ increases (arrow direction) for different
choices of the overparameterization ratio d/n→ γ. In (b) we observe for large γ > 1 that, as λ increases, the orthogonal error ‖Π⊥θ̂λ‖2
decreases, whereas the parallel error ‖θ? −Π‖θ̂λ‖2 increases. For ε > 0, the optimal λ is large enough to prevent interpolation.

beyond the interpolation threshold where previous works
show that the variance is negligible.

Moreover, Figure 2b shows that the beneficial effect of ridge
regularization persists even for noiseless data, that is when
V = 0. This supports our statement that regularization not
only helps to reduce variance, but also reduces the part of
the robust risk that is unaffected by noise in the overparam-
eterized regime. Furthermore, we show that experiments
run with finite d and n (depicted by the markers in Figure 2)
closely match the predictions in Theorem 3.1 for d, n→∞
and d/n → γ. This indicates that the high-dimensional
asymptotic regime indeed correctly predicts and charac-
terizes the high-dimensional non-asymptotic regime. Fi-
nally, even though Theorem 3.1 assumes isotropic Gaussian
covariates (Σd = Id), we can extend the result to more
general covariance matrices following the same argument
as in (Hastie et al., 2019) based on random matrix theory
(Knowles & Yin, 2014).

3.2. Intuitive explanations and discussion

We now shed light on the phenomena revealed by Theo-
rem 3.1 and Figure 2. In particular, we discuss why regular-
ization can reduce the robust risk even in a noiseless setting
and why the effect is not noticeable for the standard risk.

For this purpose, we examine the robust risk as a function of
λ, depicted in Figure 3a for different overparameterization
ratios γ > 1 and ε = 0.4. The arrow points in the direction
of increasing λ. We observe how the minimal robust risk
is achieved for a λopt bounded away from zero and how
the optimum increases with the overparameterization ratio
d/n→ γ.

In order to understand the overfitting phenomenon better,
we decompose the ridge estimate θ̂λ into its projection Π‖
on the ground-truth direction θ? and its projection Π⊥ onto

its orthogonal complement, i.e., θ̂λ = Π‖θ̂λ + Π⊥θ̂λ. For
the noiseless setting (σ2 = 0), substituting the decompo-
sition into Equation (2) yields the following closed-form
expression of the robust risk

Rε(θ̂λ) = ‖θ? −Π‖θ̂λ‖22 + (1 + ε2)‖Π⊥θ̂λ‖22 (6)

+

√
8ε2

π
‖Π⊥θ̂λ‖22(‖θ? −Π‖θ̂λ‖22 + ‖Π⊥θ̂λ‖22).

that now involves the parallel error ‖θ? −Π‖θ̂λ‖22 and the
orthogonal error ‖Π⊥θ̂λ‖22. The proof can be found in
Appendix A.1.

Figure 3b shows that, as λ increases, the orthogonal error
decreases faster than the parallel error increases. Since by
Equation (6), the orthogonal error is weighted more heavily
for large enough perturbation strength ε, some nonzero ridge
coefficient yields the best trade-off. On the other hand,
the standard risk with ε = 0 weighs both errors equally,
resulting in an optimum at λ = 0.

4. Conclusions
In this paper we prove that high-dimensional ridge regres-
sion achieves lower robust risk for a strictly positive ridge
penalty as opposed to minimum-norm interpolation, even
for the highly overparameterized regime d/n → γ � 1
and noiseless observations. Our results put into perspective
the modern narrative that interpolating overparameterized
models yield good performance without explicit regulariza-
tion and motivate the use of ridge regularization and early
stopping for improved robust generalization.
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Bühlmann, P. et al. Invariance, causality and robustness.
Statistical Science, 35(3):404–426, 2020.
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A. Setting
In Section A.1 we give a closed form expression for the robust risk. Furthermore, Section A.2 discusses that the robust
risk (2) upper-bounds the worst case risk under distributional mean shifts.

A.1. Closed form solution of robust risk

Lemma A.1. Assume that PX is the isotropic Gaussian distribution, and let Π⊥ be the orthonormal projection onto the
ground truth vector θ?. Then, the robust risk (2) with respect to `2 perturbations is given by

Rε(θ) = ‖θ? − θ‖22 + 2ε
√

2/π‖Π⊥θ‖2‖θ? − θ‖2 + ε2‖Π⊥θ‖22. (7)

Proof. A similar result for inconsistent attacks has already been shown before (Lemma 3.1. in (Javanmard et al., 2020)).
Define ỹi = yi − 〈xi, θ〉, and note that using similar arguments as in Section 6.2. (Javanmard et al., 2020)

max
δi∈U2(ε)

(ỹi − 〈δi, θ〉)2 = ( max
δi∈U2(ε)

|ỹi − 〈δi, θ〉|)2

= (|ỹi|+ max
‖δi‖2≤ε,δi⊥θ?

|〈δi, θ〉|)2

= (|ỹi|+ ε‖Π⊥θ‖2)2.

With this characterization, we can derive a convenient expression for the robust risk:

Rε(θ) = EX(|〈X, θ? − θ〉|+ ε‖Π⊥θ‖q)2

= EX(〈X, θ? − θ〉)2 + 2εEX |〈X, θ? − θ〉|‖Π⊥θ‖2 + ε2‖Π⊥θ‖22. (8)

Since we assume isotropic Gaussian features, that is PX = N (0, I), we can further simplify

Rε(θ) = ‖θ − θ∗‖22 + 2ε
√

2/π‖Π⊥θ‖2‖θ − θ∗‖2 + ε2‖Π⊥θ‖22
which concludes the proof.

A.2. Distribution shift robustness and consistent adversarial robustness

In this section we rigorously introduce distribution shift robustness and show the relation to consistent `p adversarial
robustness for certain types of distribution shifts.

When learned models are deployed in the wild, the i.i.d. assumption does not always hold. That is, the test loss might be
evaluated on samples from a slightly different distribution. Shifts in the mean of the covariate distribution is a standard
intervention studied in the invariant causal prediction literature (Bühlmann et al., 2020; Chen & Bühlmann, 2020). For mean
shifts in the null space of the ground truth θ? we define an alternative evaluation metric that we refer to as the distributionally
robust risk defined as follows:

R̃ε(θ) := max
Q∈Vq(ε;P)

EX∼Q`test(〈θ,X + δ〉, 〈θ?, X〉), with

Vp(ε; P) := {Q ∈ P : ‖µP − µQ‖p ≤ ε and 〈µP − µQ, θ
?〉 = 0}

where Vp is the neighborhood of mean shifted probability distributions and `test is a convex loss function.

A duality between distribution shift robustness and adversarial robustness has been established in earlier work such as (Sinha
et al., 2018) for general convex, continuous losses `test. For our setting, the following lemma holds.
Lemma A.2. For any ε ≥ 0 and θ, we have R̃ε(θ) ≤ Rε(θ).

Proof. The proof follows directly from the definition and consistency of the perturbations Up(ε) and orthogonality of the
mean shifts for the neighborhood Vp. By defining the random variable w = x− µP for x ∼ P we have the distributional
equivalence

x′ = µP + δ + w
d
= x+ δ



Surprising benefits of ridge regularization for noiseless regression

for x′ ∼ Q and x ∼ P with µQ − µP = δ and hence

R̃ε(θ) = max
Q∈Vp(ε)

Ex∼Q`test(〈θ, x〉, 〈θ?, x〉) = max
‖δ‖p≤ε,δ⊥θ?

Ex∼P`test(〈θ, x+ δ〉, 〈θ?, x〉)

≤ Ex∼P max
‖δ‖p≤ε,δ⊥θ?

`test(〈θ, x+ δ〉, 〈θ?, x〉) = Rε(θ)

where the first line follows from orthogonality of the mean-shift to θ?.

B. Proof of Theorem 3.1
In this section, we provide a proof of Theorem 3.1, which characterizes the asymptotic risk of the linear regression estimator
θ̂λ defined in Equation (3).

We first introduce some notation and give the standard closed form solution for the ridge regression estimate θ̂λ. Denoting
the input data matrix by X ∈ Rd×n, the observation vector y ∈ Rn reads y = X>θ? + ξ with ξ ∼ N (0, I) the noise vector.
the noise vector containing i.i.d. zero-mean σ2-variance Gaussian noise as entries. Defining the empirical covariance matrix
as Σ̂ = 1

nX>X yields the ridge estimate

θ̂λ =
1

n
(λId + Σ̂)−1X>y

= (λId + Σ̂)−1Σ̂θ? +
1

n
(λId + Σ̂)−1X>ξ. (9)

For λ→ 0, we obtain the min-norm interpolator

θ̂0 = lim
λ→0

θ̂λ = (λId + Σ̂)−1X>y = Σ̂†X>y

where Σ̂† denotes the Moore-Penrose pseudo inverse.

We now compute the adversarial risk of this estimator. By Equation (7), the adversarial risk depends on the estimator only
via the two terms ‖θ̂λ − θ?‖2 and ‖Π⊥θ̂λ‖2. To characterize the asymptotic risk, we hence separately derive asymptotic
expressions for each of both terms. The following convergence results hold almost surely with respect to the draws of the
train dataset, with input features X and observations y, as n, d→∞.

Step 1: Characterizing ‖θ̂λ − θ?‖22. Here, we show that

‖θ̂λ − θ?‖22 → B + V. (10)

where B = λ2m′(−λ), V = σ2γ(m(−λ)− λm′(−λ)) are the asymptotic bias and variance as in the Theorem and Theorem
5 of (Hastie et al., 2019), whre the authors shows that Eξ‖θ̂λ − θ?‖22 → B + V and the expectation is taken over the
observation noise ξ in the train dataset. In this paper, we define the population risks without the expectation over the noise.
Hence, in a first step, the goal is to extend Theorem 5 (Hastie et al., 2019) for the standard risk R(θ̂λ) = ‖θ̂λ − θ?‖22 such
that (10) holds almost surely over the draws of the training data.

Using Equation (9) we can rewrite

‖θ̂λ − θ?‖22 = ‖
(
Id − (λId + Σ̂)−1Σ̂

)
θ? +

1

n
(λId + Σ̂)−1X>ξ‖22

= ‖
(
Id − (λId + Σ̂)−1Σ̂

)
θ?‖22︸ ︷︷ ︸

T1

+ 〈 ξ√
n
, (λId + Σ̂)−2Σ̂

ξ√
n
〉︸ ︷︷ ︸

T2

+

〈
X>√
n

(λId + Σ̂)−1
(
Id − (λId + Σ̂)−1Σ̂

)
θ?,

ξ√
n

〉
︸ ︷︷ ︸

T3

,

where we used for the second term that 〈 ξ√
n
, X√

n
(λId + Σ̂)−2X

>
√
n

ξ√
n
〉 = 〈 ξ√

n
, (λId + Σ̂)−2Σ̂ ξ√

n
〉.

The first term T1 → B directly via Theorem 5 (Hastie et al., 2019). We next show that T2 → V and T3 → 0 almost surely,
which establishes Equation 10.
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Proof that T2 → V: While Theorem 5 (Hastie et al., 2019) also shows that Eξ tr
(

1
nξξ
>Σ̂(λId + Σ̂)−2

)
→ V , we require

the convergence almost surely over a single draw of ξ. In fact, this directly follows from the same argument as used for
the proof of Theorem 5 (Hastie et al., 2019) and the fact that ‖ ξ√

n
‖22 → σ2. Hence 〈 ξ√

n
, (λId + Σ̂)−2Σ̂ ξ√

n
〉 → V almost

surely over the draws of ξ.

Proof that T3 → 0: This follows straight forwardly from sub-Gaussian concentration inequalities and from the fact that∥∥∥∥ X√
n

(λId + Σ̂)−1
(
Id − (λId + Σ̂)−1Σ̂

)
θ?
∥∥∥∥
2

= O(1),

which is a direct consequence of the Bai-Yin theorem (Bai & Yin, 1993), stating that for sufficiently large n, the non
zero eigenvalues of Σ̂ can be almost surely bounded by (1 +

√
γ)2 ≥ λmax(Σ̂) ≥ λmin(Σ̂) ≥ (1−√γ)2. Hence we can

conclude the first part of the proof.

Step 2: Characterizing ‖Π⊥θ̂λ‖2. Here, we show that

‖Π⊥θ̂λ‖22 → B + V − λ2(m(−λ))2 =: P. (11)

We assume without loss of generality that ‖θ?‖2 = 1 and hence Π⊥ = Id − θ?(θ?)>. It follows that

‖Π⊥θ̂λ‖22 = ‖θ̂λ‖22 −
(
〈θ̂λ, θ?〉

)2
= ‖θ? − θ̂λ − θ?‖22 −

(
1− 〈θ? − θ̂λ, θ?〉

)2
= ‖θ? − θ̂λ‖22 − 2〈θ? − θ̂λ, θ?〉+ 1−

(
1− 〈θ? − θ̂λ, θ?〉

)2
= ‖θ? − θ̂λ‖22 −

(
〈θ? − θ̂λ, θ?〉

)2
.

The convergence of the first term is already known form step 1. Hence, it is only left to find an asymptotic expression for
〈θ? − θ̂λ, θ?〉. Inserting the closed form expression from Equation (9), we obtain:

〈θ? − θ̂λ, θ?〉 = 〈Id −
(
λId + Σ̂)−1Σ̂

)
θ?, θ?〉 − 〈(λId + Σ̂)−1

X>ξ
n

, θ?〉. (12)

Note that 〈(λId + Σ̂)−1 Xξ
n , θ

?〉 vanishes almost surely over the draws of ξ using the same reasoning as in the first step.
Hence, we only need to find an expression for the first term on the RHS of Equation (12). Note that we can use Woodbury’s
matrix identity to write:

〈Id −
(
λId + Σ̂)−1Σ̂

)
θ?, θ?〉 = λ〈(λId + Σ̂)−1θ?, θ?〉.

However, the expression on the RHS appears exactly in the proof of Theorem 1 (Hastie et al., 2019) (Equation 116),
which shows that λ〈(λId + Σ̂)−1θ?, θ?〉 → λm(−λ) with m(z) as in Theorem 3.1. Hence the proof of almost sure
convergence (11) of ‖Π⊥θ̂λ‖2 is complete.

Substituting Equations (10) and (11) into robust risk (7) expression yields:

Rε(θ̂λ)
a.s.−→ B + V + ε2P +

√
8ε2

π
P(B + V),

and the proof is complete.


